DOI: 10.36868/ejmse.2020.05.02.058

EFFECT OF MICRO TIO2 ON CEMENT MORTAR

Ibrahim G. SHAABAN¹, Hanaa I. El-SAYAD², Adel E. El-GHALY², Sahar MOUSSA³

¹Civil Engineering and Industrial Design Department., University of West London, UK ²Civil Engineering Department, Faculty of Engineering at Shoubra, Benha University, Egypt ³Housing and Building National Research Center, Egypt

Abstract

 TiO_2 is a primary photocatalytic ingredient. If incorporated into building materials, it can keep surfaces clean and significantly reduce smog-forming air pollutants. Many researchers have focused on the ability of Nano TiO_2 to reduce NO_x emissions or other pollutants. However, developing countries are unable to widely utilize Nano materials due to cost and technology barriers, in spite of their great need to find means for protecting structures from pollution and improve air quality. Some studies proved that micro TiO_2 (commercial grade) also has photocatalytic properties. However, the effect of this inclusion on key mechanical and durability properties needs to be verified before being recommended for wide use. In this research the effect of commercial grade TiO_2 powder on fresh state flow, compressive strength, shrinkage, sulfate resistance and carbonation. The results indicated that TiO_2 decreased the workability as mortars became more sticky and dry with increased TiO_2 content. The compressive strength was also reduced in TiO_2 containing samples compared to the control samples especially at early ages. However, TiO_2 powder as an additive in mortar was useful in reducing carbonation due to the filler effect. No samples in the current investigation showed signs of cracking or expansive mass loss due to sulfate exposure. It is recommended that TiO_2 powder should be used as an additive to the mortar plaster to help in controlling the air pollution problem. However, some mix adjustment may be needed to counteract the loss in flow and strength due to the inclusion of TiO_2 powder.

Keywords: *TiO*₂ *Powder; Air pollution; Carbonation; Compressive Strength; Shrinkage; Sulfate Resistance.*

Introduction

 TiO_2 is a primary photocatalytic ingredient that can significantly reduce smog-forming air pollutants in urban and metropolitan areas (pollution abatement) [1-3]. The number of TiO_2 patents is continually growing and currently include materials in concrete tiles, concrete paving, white cement (architectural concrete), applications on building surfaces, as well as environment-friendly cement (TioCem) [4-6].

Heterogeneous photo catalysis was first discovered by Fujishima and Honda in the 1970's. It is a process involving a catalyst that absorbs UV energy from the sun and oxidizes or decomposes organic matters in either the atmosphere or aquatic environments [7]. In addition to photocatalytic properties, TiO_2 is chemically and biologically inert, non-toxic, which makes it an accessible material for general applications. The study of the usage of TiO_2 in construction materials as a photocatalytic material initiated in the early 1990s [8].

Previous investigations concentrated on the photocatalytic properties of Nano TiO₂ [9-10], as well as TiO₂ containing cement-based materials [8, 11]. The majority of this effort has been on characterizing and enhancing the photocatalytic efficiency.

Some time ago it was suggested [12] that there is potential for using commercial TiO_2 as a in the surface layer of exterior slabs to reduce air pollution. More recently a number of

investigations have confirmed that commercial grade TiO₂ powder has photocatalytic properties. Hanson [13] studied different TiO₂ types from different manufactures to help identify which crystalline type, particle size, purity, and quantity of TiO₂ would be the most appropriate product to add to the concrete matrix to create a photocatalytic, NO_x reducing concrete surface. TiO₂ powders used in that study were either commercially available as photocatalytic grade or other samples not manufactured for photocatalytic properties. It was concluded that only some TiO_2 powder types in the anatase phase had the ability to significantly decrease NO_x pollutant concentrations. The effective anatase phases were approximately 1.0 µm in average size and had purities between 83 and 97%. The less effective anatase phase had a smaller particle size and greater than 98% purity. It was noted that the efficiency was greater if TiO₂was available near the surface of the material's cross section, so that it can be activated by solar radiation. Hanson's [13] work showed that coarser and less pure anatase TiO_2 is an effective photocatalyst, and the optimum dose in the mix was below 9% by weight of cement. Gatto [14] used micro-sized TiO₂ powders for the photo-degradation of NO_x and toluene pollutants. It was found that all micrometric TiO_2 powders, even though they are sold as not photocatalytic materials, showed good results. It was recommended that micro TiO_2 powders should be used rather than Nano TiO_2 in order to reduce health problems associated with difficult recovery and consequently health hazards due to inhalation of Nano particles.

Research Significance

Although the effects of Nano TiO_2 on various mortar and concrete properties have been thoroughly investigated [e.g. 15-18], the authors could not cite any studies on the effect of commercial grade TiO_2 on the engineering properties of mortars.

The main purpose of this research was to investigate the properties of mortars containing commercial grade TiO_2 . This is essential before the use this powder is recommended on a regular basis. The powder was utilized as an additive in small quantities not exceeding 9% by weight of cement. The experimental program has been developed to investigate the following:

- 1. The effect of TiO_2 content on flow of mortars in the fresh state.
- 2. The effect of TiO_2 content on compressive strength of mortars.
- 3. The carbonation potential of TiO_2 containing samples compared to samples without it.
- 4. The length change of mortars with and without TiO_2 as an indication of shrinkage.
- 5. The behavior of mortars with and without TiO₂ exposed to Sodium Sulfate Solution.

Experimental Program Materials

Ordinary Portland Cement (OPC) used throughout the test program was Suez Cement (CEM I 42.5 N). OPC surface area and specific gravity were 3500 cm²/g and 3150 kg/m³ respectively as specified by cement testing laboratory in Housing and Building Research Center and conforming to the requirements of ESS 4756-1/2013 [19]. The chemical composition of the cement is shown in Table1. Titanium Dioxide (TiO₂) was supplied from El Naser Pharmaceuticals Chemicals. TiO₂ was in solid state (powder), having slight odor and white color as shown in Fig. 1. TiO₂ purity was 98%. The physical properties of TiO₂ as obtained from the material manufacturer data sheet are illustrated in Table 2. Fig. 2 for X-Ray Diffraction analysis of TiO₂ reveals that it is mainly anatase phase. The particle size distribution of TiO₂ powder was measured by HORIBA Laser Scattering Particle Size Distribution Analyzer Partica LA-950. Fig. 3 and Table 3 show the particle size distribution and values for TiO₂ powder. Natural sand locally sourced from Giza desert was used as fine aggregate with average size (600µm-1.18 mm). The water used was the potable tap water.

-

Component	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	L.O.I
Content (%)	20.39	5.6	3.43	63.07	2.91	0.7	0.38	0.35	2.06
		9992				Such			
				site.	Same				
			1.1.12	. S.	3. S.				
				1	and the	1			
		Sec.	1.20	1. 61.	2.4	1			
			40	10 1 2	1. 1. 1. 1.	1998			

Table 1. Chemical composition of portland cement

Fig. 1. Titanium dioxide powder physical appearance

1.

Table 2. Physical properties of TiO₂

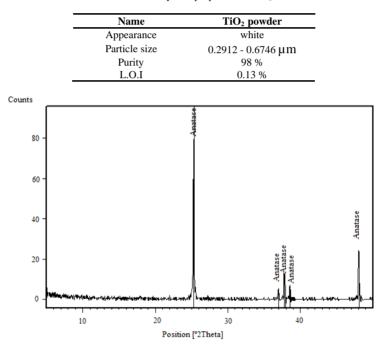
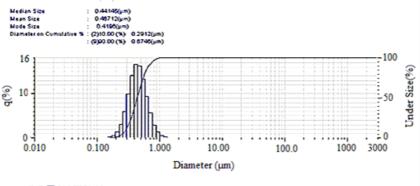



Fig. 2. X-Ray diffraction analysis of TiO₂

Table 3. Particle	e size distribution	values of TiO ₂ powder
-------------------	---------------------	-----------------------------------

No.	Diameter [µm]	q [%]	Under Size [%]
20	0.160	0.000	0.000
21	0.172	0.167	0.167
22	0.197	0.510	0.677
23	0.226	1.302	1.979
24	0.269	2.936	4.916
25	0.296	6.816	10.731
26	0.339	9.841	20.672
27	0.389	13.959	34.631
28	0.445	16.457	50.988

No.	Diameter [µm]	q [%]	Under Size [%]
29	0.510	16.138	67.126
30	0.584	13.267	80.393
31	0.669	9.263	89.646
32	0.766	6,538	95.184
33	0.877	2.867	98.051
34	1.005	1.286	99.337
35	1.151	0.498	99.835
36	1.318	0.165	100.000

HORIBA Laser Scattering Particle Size Distribution Analyzer Partica LA-950

Fig. 3. Particle size distribution of TiO₂ powder

Mixes and Sample Preparation Procedure

A total of four mixes were prepared in the laboratory. The control mix was prepared from natural sand, cement and water. The water to binder ratio for all mortars mixes was set at 0.50. The cement content of all mixes was 350 kg/m^3 . The cement to sand ratio for all mixes was set at 1:3. Other mixes were prepared with different contents of TiO₂ particles as an additive at 3%, 6% and 9% by weight of cement. A small electrical mixer was used for mixing mortars. The samples were cubes $50 \text{mm} \times 50 \text{mm} \times 50 \text{mm}$ and prisms $25 \text{mm} \times 25 \text{mm} \times 285 \text{ mm}$. The specimens were cast and compacted in two layers using a plastic compacting bar, where each layer was compacted 25 times. Then the molds were placed on compacting table and vibrated for about 15 seconds. The molds were immediately covered with plastic sheet to avoid moisture loss, and were kept at room temperature ($23 \pm 2^{\circ}$ C) for 24 hours. The specimens were then de-moulded and were kept in water for seven days for moist curing.

Testing Procedures

The tests performed were Flow table, Compressive strength, change in length, and sulfate attack in accordance with ASTM C 1437 – 07 [20]; ASTM C109 / C109M - 16a [21]; ASTM C157 / C157M – 17 [22]; ASTM C1012 / C1012M – 15 [23], respectively. The details of the prepared cubes, prisms and tests performed are presented in Table 4.

	Fresh State							
Tio ₂ % added	Control	3%	6%	9%	Control	3%	6%	9%
Flow Test	Repeat test 3 times for each mix, flow= average of 3 readings							
				Harde	ned State			
a :		Specime	ens in Air					
Compressive	Control	3%	6%	9%				
Strength test	Testing (3) cubes for each at 28, 56, 90 days							
					SI	pecimens in	CO ₂ Chamb	er
Carbonation Resistance					Control	39	6	9%
Resistance					Testing (3) cubes for e	each at 28, 50	5, 90 days
Shrinkage Test	Testing (5) prisms for	each at 28, 50	5, 90 days				
Sulfate Attack					Specimens in Sulfate Solution			on
					Control	3%	6%	9%
					Testing (5)	prisms for	each at 28, 5	6, 90 days

Table 4.	Details	of experimental	program
----------	---------	-----------------	---------

Results and Discussion

Flow Table Test

Fig. 4 shows the flow table test results. The mortar consistency decreased as TiO_2 percentage increased. The reason may be that TiO_2 is hydrophilic material (the capability of TiO_2 to absorb the mixing water). Therefore, the increase in TiO_2 content in the mortar lead to a reduction in observed flow diameter [24]. The flow is defined as the percentage increase in the average diameter of the spread mortar (D in cm), over the original diameter of the base (10 cm). The percentage expresses the degree of mortar consistency.

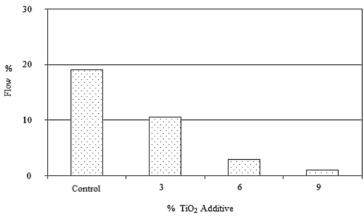


Fig. 4. Flow table test results of mortars

Compressive Srength Test

Fig. 5 shows the average compressive strength of all samples at the ages of 28, 56 and 90 days. The compressive strength decreased by increasing the amount of TiO₂ except for 6% TiO₂ mortars. In fact there is some improvement in compressive strength of 6% TiO₂ at the later age of 90 days. For mixes with 6% TiO₂, strength was better than 3% and 9% TiO₂. By increasing TiO₂ to 9%, the compressive strength was decreased by 39.9%, 30.5%, and 6.5% at ages 28, 56, and 90 days respectively compared to the control mix. This may be attributed to the possibility that the TiO₂ content in mixture was higher than the amount required to combine with the liberated lime during the process of hydration thus causing a deficiency in strength [24]. The increase in TiO₂ does not contribute to strength. Also, it may be due to the defects generated in dispersion of TiO₂ that causes weak zones [24]. Fig. 6 shows the ratio of strengths between TiO₂ mortar specimen and control specimen. It is clear that at later ages the difference in strength between samples with and without TiO₂ was small.

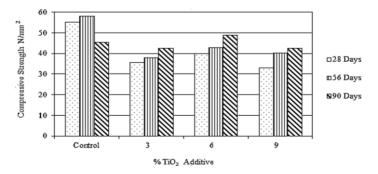


Fig. 5. Compressive strength results of cubes

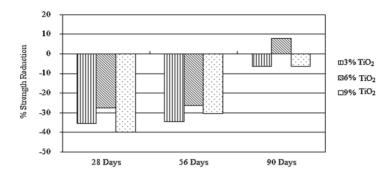


Fig. 6. Ratio of strengths between TiO₂ and control mortar at various ages

In a research that utilized Nano TiO_2 as a partial cement replacement it was reported that the compressive strength increased with higher TiO_2 Nanoparticle replacement at lower waterto-solids ratio (w/s = 0.40) and strength is not compromised by up to 10% TiO_2 replacement at higher w/s = 0.60 [25]. Similarly, mortar samples with 1, 3 or 5% nano- TiO_2 exhibited improved strength up to 28 days of curing compared to ordinary samples [26]. However, the Nano particles were dispersed a water reducer before mixing and naturally the Nano particles affect the microstructure in a more profound way compared to micro particles and this perhaps caused the observed enhanced strength.

Carbonation Depth

Fig. 7 illustrates the observations upon the application of Phenolphthalein Indicator to determine the effect of TiO_2 powder on the carbonation of mortar cubes exposed to CO_2 gas for 28, 56, and 90 days. It can be seen that the carbonation depth decreased as TiO_2 percentage increased. The carbonation depth of control samples was increased with long exposure to CO_2 gas. However, the presence of TiO_2 significantly reduced CO_2 depth especially at later ages.

The improvement in carbonation resistance with the inclusion of TiO_2 can be observed clearly after 28 days of curing. Similarly, SEM test results had previously concluded that the incorporation of nano-TiO₂ particles refines the microstructure and improves the carbonation resistance [27].

In another investigation, TiO_2 partially replaced either fine aggregate or cement, it was reported that samples with TiO_2 exhibited slightly higher carbonation depths after 13 weeks of CO_2 exposure [28]. The depths were higher with high W/B ratios and increased replacement levels leading to lower alkalinity to start with.

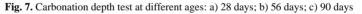
Shrinkage Test

Fig. 8 and Fig. 9 show the average of change of length for test prisms kept in laboratory air for 90 days. Five samples were tested for each mix. The change in length was determined as follows:

% Change in Length =
$$(L_0 - L_1) / L_0 \%$$
 (1)

Where: L_0 =Length of specimen after water curing; L_1 =Length of specimen at a specified test age.

It can be seen that the percentage change in lengths lightly increased with increasing TiO_2 content at all ages. Naturally, the shrinkage increased with time. Similarly, in an investigation using Nano TiO_2 in concrete it was reported that after 28 days, the dying shrinkage rate of the concrete with 1% nano- TiO_2 was 1.6 times that of ordinary concrete [29]. However, mortar samples with 1, 3 or 5% nano- TiO_2 exhibited less water loss during shrinkage


measurements compared to those without nano-TiO₂ [26]. It should be noted that the Nano particles act in a different manner compared to the micro particles and this perhaps caused the reduction in shrinkage. Fig. 9 indicates that the TiO₂ percentage had a small effect on length change values as all samples with TiO₂ exhibited similar shrinkage at each testing age.

9% Tio₂ (a) 28 days

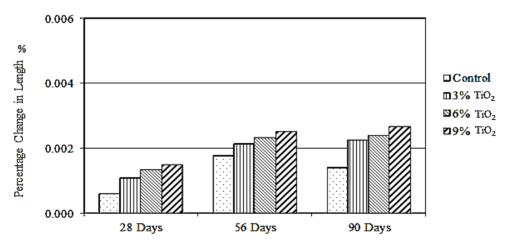


Fig. 8. Percentage change in length of prisms kept in air

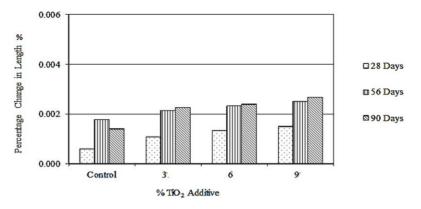


Fig. 9. Percentage Change in length of prisms kept in air at different ages

Sulfate Attack Test

Fig. 10 shows the prism samples immersed in sulfate solution in glass container. The top of the container was glass plate then sealed to prevent evaporation. Fig. 11 shows the average of change of length test prisms during 90 days sulfate solution exposure. Five samples were tested from each mix. It can be observed that the expansion of mortar prisms was decreased by increasing TiO₂ percentage at all ages except for 9% TiO₂. The 9% TiO₂ mortar prisms were shrinking in sulfate solution. Table 5 shows the percentage mass loss of prisms kept in sulfate solution. It can be seen that the shrinkage of 9% TiO₂ samples was not due to mass loss. In fact no samples exhibited cracking in the current investigation. Mass loss values were smaller with higher percentage of TiO₂.

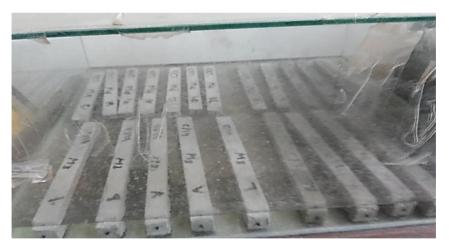


Fig. 10. Setup for sulfate attack test

Table 5. Percentage mass loss of prisms kept in sulfate solution

Mix	28 Days	56 Days	90 Days
Average for Control	0.50%	0.86%	0.69%
Average for 3% TiO ₂	0.50%	0.86%	0.69%
Average for 6% TiO ₂	0.47%	0.25%	0.08%
Average for 9% TiO ₂	0.40%	0.10%	0.06%

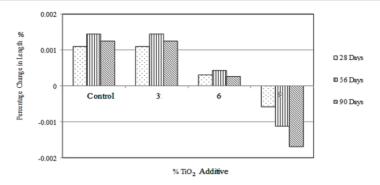


Fig. 11. Percentage Change in length of prism kept in sulfate solution

It has been reported that the use of TiO_2 Nano particles improves the resistance to water permeability of concrete when it is mixed in cement pastes [30, 31]. This improved water ingress resistance should contribute to better resistance to all chemical attack including sulfate attack.

In another publication, samples of 5%, 10%, and 15% Nano TiO_2 mortar prisms were immersed partially in 15% Na₂SO₄ solution developed heavy efflorescence within several days after the start of the experiment, with white deposits covering whole sample surfaces. However, no cracking was observed on the sample surfaces. Therefore, the aesthetics of the samples were negatively affected, but the soundness was not impaired [32].

The effect of TiO₂Nano particles on Fly Ash concrete properties was investigated. The results confirmed higher resistance to sulfate attack due to addition of Nano particles to Fly Ash concrete. In addition, Fly Ash-nano titanium dioxide specimens showed lesser weight loss compared to Fly Ash concrete without Nano TiO₂ [33].

Conclusions

The addition of TiO_2 reduces the flow of the mortar mixes measured in accordance with ASTM: C 1437–07.

The compressive strength of mortars was tested in accordance with ASTM C109/C109M-16a and was reduced with inclusion of TiO_2 ; however, this decrease in strengths was less noticeable at later ages.

The samples kept in laboratory air all exhibited comparable shrinkage regardless of the TiO2 content. However, shrinkage of these mortars was slightly higher than the control mortar.

By storing the samples in the proposed built CO_2 chamber for up to 90 days, the samples containing TiO_2 showed small or no carbonation depth. However carbonation occurred in the control samples.

Samples with 3% TiO₂ exhibited similar behavior to the control samples when exposed to sulfate for up to 90 days. The test was conducted in accordance with ASTM C1012-04. Samples with higher TiO₂ exhibited better performance compared to the control samples without TiO₂. No samples in the current investigation showed signs of cracking or expansive mass loss due to sulfate exposure.

The properties of samples containing micro TiO_2 used in this investigation may show similar trends to the properties reported in the literature for Nano TiO_2 . However, it should be remembered that the mechanism of action of each type of particle at the microstructure level is different and the comparison was quoted here to draw the attention to the expected behavior in service for both types of materials. The current consensus in the literature [34] points towards the beneficial effect of TiO_2 additions to cement composites as the product has self-cleaning, self-disinfecting, and depolluting effects.

It is recommended that TiO_2 should be used as an additive to the mortar plaster. However, the mortar with TiO_2 would need to be optimized for consistency and compressive strength to be used effectively.

References

- D. Shafaei, S.Yang, L. Berlouis, J. Minto, *Multiscale pore structure analysis of nano titanium dioxide cement mortar composite*, Material Today Communications, 22, 2020, pp.100779–100788. https://doi.org/10.1016/j.mtcomm.2019.100779
- [2] C.S. Poon, and E. Cheung, *NO Removal Efficiency of Photocatalytic Paving Blocks Prepared with Recycled Materials*, Construction and Building Materials, 21(8), 2007, pp. 1746-1753.
- [3] M.M. Hassan, L.N. Mohammad, S.B. Cooper, H. Dylla, Evaluation of Nano-Titanium Dioxide Additive on Asphalt Binder Aging Properties, Journal of the Transportation Research Board, 2207, Transportation Research Board of the National Academies, Washington, D.C., 2011, pp. 11–15. DOI: 10.3141/2207-02.
- [4] TX Active®, Lehigh Hanson, Inc., https://www.lehighhanson.com/products/cement/tx-active (Accessed March 2020).
- [5] Yoshihiko, M. K. Kiyoshi, T. Hideo, O. Hiroshi, and Y. Yutaka, *NO_x Removing Pavement Structure*, **US Patent Office**, Patent No. 6454489, 2002.
- [6] TioCem®, Heidelberg Cement, https://www.heidelbergcement.de/de/tiocem-en (Accessed March 2020).
- [7] A. Fujishima, K. Honda, *Electrochemical Photolysis of Water at a Semiconductor Electrode*, Nature 238, 1972, pp. 37-38.
- [8] M. V. Diamanti, M. Pedeferri, Photocatalytic performance of mortars with nanoparticles exposed to the urban environment, Nanotechnology in Eco-efficient Construction (Second Edition) Materials, Processes and Applications, Wood head Publishing Series in Civil and Structural Engineering, 2019, pp. 527-555, https://doi.org/10.1016/B978-0-08-102641-0.00022-0
- [9] A. Fujishima, X.T. Zhang, D.A. Tryk, *TiO*₂*Photocatalysis and Related Surface Phenomena*. **Surface Science Reports**, 63(12), 2008, pp. 515-582.
- [10] O. Carp, C.L. Huisman, A. Reller, *Photoinduced Reactivity of Titanium Dioxide*, *Progress in Solid State Chemistry*, 32(1-2), 2004, pp. 33-177.
- [11] T. Maggos, A. Plassais, J.G. Bartzis, Ch. Vasilakos, N. Moussiopoulos, L. Bonafous, *Photocatalytic Degradation of NO_x in a Pilot Street Canyon Configuration Using TiO₂mortar Panels*, Environmental Monitoring and Assessment, 136(1-3), 2008, pp. 35-44.
- [12] D.H. Chen, K-Y. Li, R. Yuan, Photocatalytic Coating on Road Pavements/Structures for NO_x Abatement, Texas Air Research Center, Lamar University, Beaumont, Texas. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.604.5945&rep=re p1&t ype=pdf
- [13] S. Hanson, *Evaluation of Concrete Containing Photocatalytic Titanium Dioxide*. PhD Thesis, Department of Civil and Environmental Engineering, University of Utah, USA, 2014.
- [14] S. Gatto, Photocatalytic Activity Assessment of Micro-sized TiO₂ used as Powders and as Starting Material for Porcelain Gres Tiles Production, PhD Thesis, Department of Chemistry, University of Milano, Italy, 2014.
- [15] A. Nazari, S. Riahi, The effect of TiO₂ Nanoparticles on Physical, Thermal and Mechanical Properties of Concrete Using Granulated Blast Furnace Slag as Binder, Materials Science and Engineering A, 528(4-5), 2011, pp. 2085-2092.

- [16] B. Ma, H. Li, X. Li, J. Mei, Y. Lv, Influence of Nano-TiO₂ on Physical and Hydration Characteristics of Fly Ash-Cement Systems, Construction and Building Materials, 122, 2016, pp. 242–253.
- [17] J. Chen, S. Kou, C. Poon, Hydration and Properties ofNano-TiO₂ Blended Cement Composites. Cement and Concrete Composites, 34(5), 2012, pp. 642–649.
- [18] S.N. Zailan, N. Mahmed, M.A.A Abdullah, A.V. Sandu, N.F. Shahedan, *Review on Characterization and Mechanical Performance of Self-cleaning Concrete*. MATEC Web of Conferences, 97(01022), 2017, pp.1-7.
- [19] Egyptian Standard Specification 4756-1, Cement Part (1) Composition, Specifications and Conformity Criteria for Common Cements, 2013.
- [20] ASTM C 1437–07, Standard Test Method for Flow of Hydraulic Cement Mortar, 2007.
- [21] ASTM C109/C109M-16a, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), 2016.
- [22] ASTM C157/C157M–17, Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete, 2017.
- [23] ASTM C1012 / C1012M 15, Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution, 2015.
- [24] M.S. Khalafalla, O.A. Hodhod, I.A. Adam, *Improving the Mechanical Properties of Cement Mortar By Nano Titanium*, Journal of Engineering Sciences, Assiut University, Faculty of Engineering, 43(5), 2015, pp. 663- 681.
- [25] B.Y. Lee, A.R. Jayapalan, K.E. Kurtis, *Effects of nano-TiO₂ on properties of cement-based materials*. Magazine of Concrete Research, 65, 2013, pp. 1293–1302.
- [26] R. Zhang, X. Cheng, P. Hou, Z. Ye, Influences of Nano-TiO₂ on the Properties of Cementbased Materials: Hydration and Drying Shrinkage, Construction and Building Materials, 81, 2015, pp. 35–41.
- [27] P. Duan, C. Yan, W. Luo, W. Zhou, *Effects of Adding Nano-TiO*₂ on Compressive Strength, Drying Shrinkage, Carbonation and Microstructure of Fluidized Bed Fly Ash Based Geopolymer Paste, Construction and Building Materials, 106, 2016, pp. 115–125.
- [28] M. Hasebe, H. Edahiro, Experimental Studies on Basic Properties of Concrete Using TiO₂ as Admixture, Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP. 2013.
- [29] M.H. Zhang, H.G. Wang, Strength and Drying Shrinkage of Pavement Concrete with Nano Particles, Advanced Materials Research, 662, 2013, pp. 182-185.
- [30] A. Nazari, S. Riahi, *The effects of TiO*₂ nanoparticles on properties of binary blended concrete, Journal of Composite Materials, 45, 2011, pp. 1181–1188.
- [31] A. Suleiman, M. Nehdi, Effect of Pore Structure on Concrete Deterioration by Physical Sulfate Attack, Resilient Infrastructure Conference. London, 2016, paper: (MAT-720-1)-(MAT-720-9).
- [32] B.Y. Lee, Effect of Titanium Dioxide Nanoparticles on Early Age and Long Term Properties of Cementitious Materials, PhD Thesis, School of Civil & Environmental Engineering, Georgia Institute of Technology, 2012.
- [33] U. Sudha, V. Vishwakarma, D. Ramachandran, R.P. George, K. Kumari, R. Preetha, U.K. Mudali, C.S. Pillai, *Nano Phase Modification of Fly Ash Concrete for Enhanced Corrosion Resistance*, **Durability & Antibacterial Activity in Marine Environment**. 2015, pp. 64-70.
- [34] F. Hamidi, F. Aslani, TiO₂-based Photocatalytic Cementitious Composites: Materials, Properties, Influential Parameters, and Assessment Techniques. Nanomaterials. 9(10), 2019, 1444. https://doi.org/10.3390/nano9101444.

Received: March 13, 2020 Accepted: April 25, 2020